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Abstract

Breast cancer rates are rising in low- and middle-income countries (LMICs), yet there is a

lack of accessible and cost-effective treatment. As a result, the cancer burden and death

rates are highest in LMICs. In an effort to meet this need, our work presents the design and

feasibility of a low-cost cryoablation system using widely-available carbon dioxide as the

only consumable. This system uses an 8-gauge outer-diameter needle and Joule-Thomson

expansion to percutaneously necrose tissue with cryoablation. Bench top experiments char-

acterized temperature dynamics in ultrasound gel demonstrated that isotherms greater than

2 cm were formed. Further, this system was applied to mammary tumors in an in vivo rat

model and necrosis was verified by histopathology. Finally, freezing capacity under a large

heat load was assessed with an in vivo porcine study, where volumes of necrosis greater

than 1.5 cm in diameter confirmed by histopathology were induced in a highly perfused liver

after two 7-minute freeze cycles. These results demonstrate the feasibility of a carbon-diox-

ide based cryoablation system for improving solid tumor treatment options in resource-con-

strained environments.

Introduction

Over 8 million cancer deaths occurred worldwide in 2012, with breast cancer being the largest

cause of cancer-related mortality for women with almost 500,000 reported deaths [1]. While

diagnostic and treatment technologies in the developed world have advanced such that the

five-year survival rate for breast cancer is almost 90% in the United States [2], the survival rate

in low- and middle-income countries (LMICs) can range from 64% in Saudi Arabia to 46% in
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Uganda to only 12% in The Gambia [3]. These rates are typically lower in rural areas of LMICs

due to inadequate treatment and long travel times to regional hospitals [4]. The current treat-

ment pattern used in developed countries—surgery, chemotherapy, and radiation therapy—is

inefficient, inaccessible, and costly in many LMICs [5,6].

Tissue ablation has several advantages over surgical treatments for practical use in LMICs,

and previous work has explored the use of cryoablation for treatment of cancers including

liver, lung, prostate, and breast cancer [7–12]. Cryoablation is a minimally-invasive treatment

that is well tolerated with the intrinsic anesthetic properties of cold providing local anesthesia

[13]. Moreover, the ice formation can easily be tracked with ultrasound for real-time treatment

guidance. These features permit precise and effective cryoablation treatment with a compan-

ion ultrasound unit and only a local skin cleaning rather than the current standard of general

anesthesia and an operating theater for surgery [9,14]. Importantly, circumventing the require-

ment for a sterile operating room would enable treatments to be performed at local clinics,

which are more accessible to patients as they are more abundant in the rural regions. Further,

by virtue of being minimally invasive, cryoablation is known to reduce pain, bleeding, and

recovery time when compared with surgical procedures [15].

Cryoablation kills breast cancer cells through the formation of intracellular ice crystals,

which begin forming at temperatures below -20˚C; however, temperatures below -40˚C are

optimal for cryoablation due to the certainty of ice crystal formation [16]. To reach these cold

temperatures, argon gas is commonly stored at high-pressure and is then allowed to expand

through a pinhole-like opening to reach atmospheric pressure. The gas undergoes rapid

expansion and, due to the Joule-Thomson (JT) effect, rapidly decreases temperature [16]. This

expansion takes place inside a cryoprobe that is percutaneously inserted into the cancerous tis-

sue, and the temperature of the cryoprobe causes an iceball as ice crystals form in surrounding

cells (Fig 1). This mechanism introduces a temperature gradient in the iceball of -40˚C at the

probe tip to 0˚C at the edge of the iceball. Previous work has found that tissue held below

-20˚C for over a minute creates necrosis throughout the region [16]. Treatment is cycled with

two freeze cycles interrupted by a thaw cycle, which allows for both cell death via cellular dehy-

dration as well as through the formation of intracellular ice crystals [16].

Although cryoablation is promising for use in low-resource settings, most devices are not

designed with cost and resource constraints in mind or for use in LMICs. Current cryoablation

systems are too expensive for use in LMICs, as a single treatment can cost upwards of $10,000,

Fig 1. The percutaneous cryoprobe consists of a double-chamber needle. CO2 gas flows through the inner chamber, cools upon JT expansion at the tip, and is exhausted

through the outer chamber.

https://doi.org/10.1371/journal.pone.0207107.g001
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with over half of the cost coming from disposable, single-use parts [17]. Furthermore, while

argon gas is optimal for cryoablation, as it can reach temperatures as low as its boiling point of

-185.8˚C [16], it is not available in LMICs. Alternatively, carbon dioxide (CO2) is available in

most rural areas due to the carbonated beverage industry and via the Joule-Thomson effect

can reach a temperature as low as -78.5˚C [18]. In an effort to develop a practical system for

tumor treatment in LMICs, we have assessed the performance of a custom-designed cryoabla-

tion system optimized for use with CO2; it is the first percutaneous cryotherapy system to use

only CO2 as a consumable, and features a robust system with reusable probe tips to further

lower the cost per treatment. We report our results from three stages of experimental evalua-

tion: bench top experiment in an ultrasound gel tissue phantom, in vivo testing on mammary

tumors in a rat model with necrosis verified via histopathology, and assessment of freezing

capacity under a large heat load with an in vivo experiment in a porcine model. Demonstrating

the feasibility of cryoablation with CO2 will potentially allow for increased affordable and

accessible breast cancer treatment globally.

Materials and methods

Cryoablation system design

Our custom-designed cryosystem consists of two modules: the cryoprobe and the gas-control

module. The two modules are connected with nylon tubing and joined by high-pressure brass

pipefittings. The gas-control module is comprised of a high-pressure fitting that directs CO2

gas to the JT nozzle. This tubing allows gas release from a high-pressure environment into the

cryoprobe chamber, which causes the cryoprobe to rapidly cool. The cooled CO2 gas then

leaves the probe chamber and flows through the pre-cooling chamber that surrounds the gas

inflow tube leading to the JT nozzle (Fig 2). The pre-cooling process serves as a positive feed-

back to the cooling system by chilling the inflow gas before it reaches the JT nozzle. After leav-

ing the cryoprobe, the gas is released into the atmosphere through an outflow tube. The gas

control module is directly connected to a tank of compressed CO2, and is comprised of a valve

to control flow to the cryoprobe and a pressure gauge that monitors the gas supply level in the

tank. To begin a freeze cycle, the valve on the CO2 tank is opened, and the control valve is

opened to allow gas to flow through the system and cooling to begin.

Fig 2. The gas control module of the cryoablation system (left) connects to a conventional compressed CO2 gas canister used in the carbonated beverage industry

and regulates flow to the cryoprobe (right) during cryoablation.

https://doi.org/10.1371/journal.pone.0207107.g002
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Thermodynamic profiles in tissue phantom

Initial tests were performed with the cryosystem in an ultrasound gel tissue phantom for early

validation in accordance with prior studies [19]. To evaluate device performance, photographs

of the iceball were taken every 30 seconds, and temperature of the cryoprobe was monitored

every 0.5 seconds using a thermocouple. In total, the freezing capacity was evaluated through

six trials per probe where the system completed a 5-minute freeze cycle, a 3-minute thaw cycle,

and then a second 5-minute freeze cycle. For each test, the given probe was submerged in a

beaker filled with 400 mL of ultrasound gel at 22.6˚C. Pictures were analyzed in ImageJ [20] to

determine iceball size.

In vivo cryoablation of mammary tumors

Prior to experimentation, our institutional Animal Care and Use Committee approved the rat

protocol. For this portion of the study, cryoablation was performed in vivo in Sprague Dawley

rats induced with primary mammary tumors via injections of N-Nitroso-N-methylurea

(MNU). This was done to validate the efficacy of the device in necrosing breast cancer cells via

histopathology, similar to previous studies [21].

Nine female Sprague Dawley rats, obtained from the Charles-River Laboratories, were

induced with mammary tumors by intraperitoneal injections of 50 mg/kg of MNU (analytical

grade, Sigma/Oakwood Products, Inc.) at 5 weeks and 7 weeks of age. Similar to previous stud-

ies [22,23], between one and three tumors were induced per rat, each of which was treated in

separate procedures. A total of ten mammary tumors in nine rats were successfully treated by

cryoablation. The tumors induced were allowed to grow to a maximal diameter of 40 mm

before being ablated and removed from the animal. Each animal was checked daily and no ani-

mal showed severe signs of illness (including weight loss, anorexia or hunched posture) due to

tumor bearing, and a threshold was set so that each animal went through no more than 4 cryo-

therapy treatments before euthanasia. After treatment, each animal was provided post-opera-

tive care including: a private cage, antibiotic ointment at the wound site, and close post-

anesthesia monitoring until autonomous movement was exhibited. To determine the extent of

necrosis caused by the puncture of the cryoprobe rather than the freezing, one tumor was

selected at random as a no-treatment control (no freeze) in which no CO2 was released

through the system, but all other procedural steps were followed including needle insertion

and elapsed time.

The animals were housed in laminar flow rooms with an automated watering system for

fresh drinking water, and the food was autoclaved before serving. All procedures were per-

formed in the veterinary operating room aided by a trained surgeon, and each rat was anesthe-

tized throughout the procedure. During the period of the study, one animal died due to the

experimental procedures. This rat was the first treated and the tumor was located on the left

chest wall. It is believed that this animal died of heart failure caused by low temperature

around the heart. The procedure was improved accordingly and other preventive measures

were added to prevent similar incidents from happening. For the rest of the study, the animal

was placed on a heating pad to stabilize body temperature and a rectal thermometer was used

to monitor core body temperature. The tumors were surgically exposed such that each tumor

was separated from the skin, keeping any large blood vessels intact. After the majority of the

tumor was separated from the skin, petroleum jelly-coated gauze was placed between the

tumor and the skin to act as a thermal insulator to prevent cold injury to the rat’s skin (Fig 3).

Prior to cryoprobe insertion, a trocar was used as a guide for the cryoprobe along the lon-

gest axis of the tumor. Then, the cryoprobe was inserted into the tumor and a thermocouple

was placed 0.5 cm from the probe surface to measure tumor temperature. The control valve
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was then turned on and CO2 flowed, rapidly cooling the device and the adjacent tissue. To

ensure the tumor exposure and subsequent necrosis, the first freeze cycle continued until the

temperature from the thermocouple stabilized below -30˚C for at least one minute with a max-

imum freezing time of 7 minutes [21]. Then, the control valve was turned off for a 3-minute

thaw cycle followed by the control valve being turned on for a secondary freeze cycle defined

by the same temperature and time requirement as the first freeze cycle. After the second freeze,

the control valve was turned off and the tumor was allowed to thaw to 20˚C followed by

removal of the cryoprobe. The wounds were closed with surgical clips and the tumor remained

in situ for a minimum of 72 hours before excision, allowing time for necrosis. The tumors

were fixed in a buffered formalin fixative, and stained with hematoxylin and eosin (H&E) for

examination by a pathologist to assess the extent of necrosis [21].

In vivo cryoablation under heat load

Prior to experimentation, our institutional Animal Care and Use Committee approved the

swine protocol. For this portion of the study, cryoablation was performed in vivo in the normal

liver of a pig to validate the efficacy of the device under a heat load analogous to a human

breast, similar to previous studies [24,25]. One Yorkshire female swine was obtained from

Archer Farms, Inc. and was housed in social groups at Johns Hopkins Ross Research building

RAR animal housing and provided enrichment in forms of food treats and toys. The animal

was observed daily pre-surgery, and 48 hours prior to the procedure the animal was switched

to a liquid diet before being fasted overnight before the cryoablation surgery.

All procedures were performed in a research surgical suite with aseptic technique by a vet-

erinarian and interventional radiologist. The swine was sedated and an IV catheter was intro-

duced to administer antibiotics and anesthetic induction. The pig was intubated and general

anesthesia was maintained with isoflurane anesthesia with mechanical ventilation. The swine

was placed in a supine position, and a midline incision was used rather than percutaneous

insertion of the probe through the skin, as the goal was to freeze only the liver tissue rather

than the skin, muscle and fatty tissue anterior to the liver.

Fig 3. The diagram (a) depicts the treatment setup, pictured in (b), for in vivo cryoablation of mammary tumors in Sprague Dawley rats. Tumors were elevated from the

body and insulated with petroleum jelly to prevent skin damage, and tumor temperature was monitored using a thermocouple during the procedure.

https://doi.org/10.1371/journal.pone.0207107.g003
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A trocar was used as a guide to enter the liver under ultrasonic guidance and then the cryo-

probe was inserted. The device was positioned and CO2 was allowed to flow. Gauze soaked in

warm saline was placed near the skin to aid in preventing skin necrosis. The iceball growth

was monitored via ultrasound imaging and the timing of the freeze-thaw cycles was deter-

mined by the plateau of the iceball growth. Two 7-minute freeze cycles were performed with a

4-minute thaw cycle between the freeze cycles (Fig 4).

The midline incision was closed and the pig was recovered. The animal was returned to its

housing facility to a private cage and monitored closely. Buprenorphine was provided as

needed in the first 6–12 hours post-surgery and oral cephalosporin-based antibiotics were

given daily. The pig was humanely euthanized 48 hours after cryoablation, and the liver was

excised, sectioned, and submitted for H&E staining to examine necrosis. This delay in excision

and pathology was necessary as obvious signs of necrosis are not present until at least two days

post-cryosurgery [21].

Results

Thermodynamic profiles in tissue phantom

The experiment was run on various prototypes, which guided the choice of probe for final use

and further validation and are detailed below. Images taken of iceball growth over time were

Fig 4. An incision was made exposing the swine liver, and the cryoprobe was inserted (outlined in white dashes). Two 7-minute freeze cycles were performed, causing

an iceball to form in the liver tissue.

https://doi.org/10.1371/journal.pone.0207107.g004
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used to inform both final iceball size as well as isotherm size through a freeze-thaw-freeze cycle,

as seen in Fig 5. Over six trials, the probe produced an average iceball diameter of 2.230 +/- 0.075

cm. Additionally, across all six trials, temperatures at the cryoprobe reached< -40˚C in the first

freeze cycle, with the temperature in the second freeze cycle decreasing an additional 5˚C.

In vivo cryoablation of mammary tumors

Two tumors were not treated using cryoablation and were instead surgically excised as it was

determined that the tumors were too close to the heart, posing too great of risk to treat. Addi-

tionally, results from two trials were not included due to improper wound closure resulting in

indeterminable causes of tumor necrosis. All other tumors treated in the rat experiment

showed significant levels (>85%) of tumor necrosis while the tumor from the negative control

trial was uniformly viable (Table 1). Tumor sizes ranged from 2.0–3.4 cm.

In vivo cryoablation under heat load

Tissue damage was seen in the sectioned portions of liver with defined borders between

healthy and necrotic tissue (Fig 6).

We observed a rapid transition from necrotic tissue to relatively normal liver tissue, as is

demarcated by the dashed line in Fig 7. Histopathology examination of the ablated area con-

firmed varied gradients of necrosis (Fig 8).

The minimum diameter of the necrotic region, from Region A out to Region C, was mea-

sured to be 2.08 cm as seen in Fig 8. As the plane of the tissue sections was not strictly perpen-

dicular to the tract of the cryoprobe, the minimum diameter was used to determine the

minimum cross sectional area of 3.4 cm2. As the iceball forms in a cylindrically symmetrical

shape, any cross section will result in an ellipse with a minor diameter equal to the diameter of

the cylinder.

Discussion

The results of this study demonstrate the capacity of CO2-based cryoablation with a percutane-

ous cryoprobe to cause necrosis in large volumes of tissue and tumors. In tests performed in

Fig 5. (a) Iceball growth over time as visualized in the tissue phantom, (b) plot of probe temperature at the cryoprobe tip and iceball diameter over time

demonstrating temperatures below -40˚C and iceball diameters larger than 2 cm.

https://doi.org/10.1371/journal.pone.0207107.g005
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tissue phantom, a confident freezing volume with a radius of 2.23 ± 0.075 cm was observed

over six trials. A minimum temperature below -40˚C was achieved in all trials, which satisfies

the standard freezing temperatures for tumor necrosis accepted for similar cryoablation

devices currently used in the United States [16]. While the freezing capacity of the cryoablation

device was verified in phantoms, in vivo studies were performed to determine whether the

device could induce tumor necrosis. Histopathology of carcinogen-induced mammary tumors

in rats demonstrated the device’s ability to repeatedly induce necrosis in large volume malig-

nancies. However, in the rat tumor model, there was not significant heat load. Thus, we evalu-

ated the device’s efficacy in a swine liver, i.e., 39˚C—an environment with a heat load similar

to that of the human breast, i.e., 37˚C [25]. This step was crucial in validating freezing ability

because the heating effect of blood perfusion could significantly reduce iceball formation.

Liver sections and histology confirmed that our CO2-based cryoablation device is capable of

inducing necrosis in up to 2.08 cm diameter regions. Cryoablation in clinical settings has been

done in the U.S. and results have shown complete necrosis in tumors less than 2 cm in diame-

ter [26]. Therefore, the performance of our custom built cryosystem is comparable to bench-

mark values of various accepted cryoablation standards of other gas-based systems in the

United States.

While promising, there are several limitations to this study that will direct future work.

Although results have shown cellular necrosis of a 1.5-cm diameter mammary tumor both in

rats and in swine liver, it should also be noted that this study did not investigate the use of this

Table 1. Histological results categorized by level of Necrosis.

Region Percent

Necrosed

Tumors Histological Characteristics

A 100% 5 Tumor area completely necrotic; reactive stroma observed

B �85% and

<100%

5 Large area of necrotic debris, edge has a mixture of necrotic inflammatory cells, hemorrhage from cryoablation, neutrophils,

degraded islands and few apoptotic cells

C <85% & >0% 0 Moderate area of necrotic debris, mostly neutrophils, nests of viable/degrade cells

D 0% 1

Control

Viable tumor cells throughout the section

https://doi.org/10.1371/journal.pone.0207107.t001

Fig 6. A section of the liver after perfusion and fixation where cryoablation was performed. Defined borders are

seen between the dark necrotic tissue and the lighter healthy tissue.

https://doi.org/10.1371/journal.pone.0207107.g006
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device in the necrosis of cancerous tissue under a heat load. These preliminary studies did pro-

vide information related to the potential for damage to healthy tissue and skin, which could

lead to issues in wound healing. This must be examined further in order to ensure the named

device can match the standards of care set by existing cryoablation systems.

Future studies are warranted to examine several areas including the extent of necrosis in

cancer under a heat load and the impact of the device on healthy tissue and long-term healing.

Additionally, there have recently been significant inquiries into the immune response to breast

cancers due to cryoablation. These include animal studies examining rejection rates of tumors

in mice when rechallenged [27,28] as well as human trials examining the immune response

Fig 7. (a) Histologic analysis found a 1.48-cm region of complete necrosis (Region A), with a 0.1- to 0.2-cm wide region of complete necrosis with traces of hemorrhaging

(Region B), a 0.1- to 0.4-cm margin of complete hepatocyte necrosis with intact bile ducts (Region C), and a region of non-necrotic hepatocytes beyond this (Region D) (b)

Diameters of necrotic regions are depicted in a circular cross section.

https://doi.org/10.1371/journal.pone.0207107.g007

Fig 8. Histological results of the different gradients of necrosis and tissue damage as viewed histologically. (a) Histology image from Region A, Complete necrosis; (b)

Region B, Complete necrosis with traces of hemorrhage; (c) Region C, Complete necrosis of hepatocytes but bile ducts intact; (d) Region D, healthy liver tissue.

https://doi.org/10.1371/journal.pone.0207107.g008
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and overall survival outcomes of patients treated with cryoablation [29,30]. This promising

work furthers the potential for impact that cryoablation of breast cancer could have in LMICs,

and opens the door for future studies to examine the immune response induced by this device.

Conclusions

This study evaluated the use of a cryoablation device that utilizes CO2 as the cryogen in a vari-

ety of experimental settings, thus exploring its potential as a breast cancer treatment in LMICs.

Although previous work has examined the use of argon-based cryoablation, no such work has

explored the efficacy of a CO2-based cryoablation device. Our results demonstrate the efficacy

of this device in phantoms, at the cellular level as examined in induced mammary tumors in

rats, and under high heat load and perfusion as performed in swine liver. Thus, this device has

passed crucial benchmarks meriting further research in both large animals with tumors and

eventually in human trials. With the introduction of this device, we are optimistic that the care

paradigm in LMICs may shift in the near future to account for the availability of affordable

and effective treatment in rural areas.
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